OFFSET
1,2
FORMULA
a(2*n-1) = (2*n-1)!.
EXAMPLE
E.g.f.: A(x) = x + 3*x^2/2! + x^3 + 34*x^4/4! + x^5 + 1096*x^6/6! + x^7 + 56848*x^8/8! + x^9 + 5451136*x^10/10! + x^11 +...
where A(x) = log((1+exp(2*x))/2) + log((1+exp(2*x^2))/2) + log((1+exp(2*x^3))/2) + log((1+exp(2*x^4))/2) +...
The exponentiation of the e.g.f. begins:
exp(A(x)) = 1 + x + 4*x^2/2! + 16*x^3/3! + 104*x^4/4! + 696*x^5/5! + 6272*x^6/6! + 57856*x^7/7! + 652416*x^8/8! +...+ A203716(n)*x^n/n! +...
MATHEMATICA
nmax = 25; Rest[Range[0, nmax]! * CoefficientList[Series[Sum[Log[1/(1 - Tanh[x^k])], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Mar 21 2016 *)
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=1, n, log((1+exp(2*x^m+x*O(x^n)))/2)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 04 2012
STATUS
approved