login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375448
Expansion of the g.f. A(x) with the property that the sum of the first n coefficients in A(x/n)^n equals n^2 for n >= 1.
3
1, 3, 6, 33, 357, 5283, 96534, 2067312, 50345955, 1367512761, 40875976152, 1331343423234, 46892513148468, 1775323414999818, 71885746640828286, 3100014000785085216, 141857882269044077865, 6866221878372182554395, 350521791594556907681202, 18824690900373744731703396
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) satisfies [x^n] x*B'(x/n) / (1 - n*B(x/n)) = n^2 for n >= 1, where B(x/A(x)) = x and B(x) is the g.f. of A375449.
a(n) ~ c * n^(n+1), where c = 0.5698891168602..., conjecture: c = (exp(1)-1)/exp(3*exp(-1)). - Vaclav Kotesovec, Sep 13 2024
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 33*x^3 + 357*x^4 + 5283*x^5 + 96534*x^6 + 2067312*x^7 + 50345955*x^8 + 1367512761*x^9 + 40875976152*x^10 + ...
The defining property of g.f. A(x) is described below.
The table of coefficients in A(x)^n begins:
n=1: [1, 3, 6, 33, 357, 5283, 96534, ...];
n=2: [1, 6, 21, 102, 948, 13104, 230139, ...];
n=3: [1, 9, 45, 234, 1935, 24678, 414234, ...];
n=4: [1, 12, 78, 456, 3561, 41868, 667746, ...];
n=5: [1, 15, 120, 795, 6150, 67428, 1017540, ...];
n=6: [1, 18, 171, 1278, 10107, 105246, 1501578, ...];
n=7: [1, 21, 231, 1932, 15918, 160587, 2172807, ...];
...
in which the sum of the first n coefficients in A(x/n)^n equals n^2, as illustrated by
1 = 1;
4 = 1 + 6/2;
9 = 1 + 9/3 + 45/3^2;
16 = 1 + 12/4 + 78/4^2 + 456/4^3;
25 = 1 + 15/5 + 120/5^2 + 795/5^3 + 6150/5^4;
36 = 1 + 18/6 + 171/6^2 + 1278/6^3 + 10107/6^4 + 105246/6^5;
49 = 1 + 21/7 + 231/7^2 + 1932/7^3 + 15918/7^4 + 160587/7^5 + 2172807/7^6;
...
RELATED SERIES.
Let B(x) be the series reversion of x/A(x), B(x/A(x)) = x, then
B(x) = x + 3*x^2 + 15*x^3 + 114*x^4 + 1230*x^5 + 17541*x^6 + 310401*x^7 + 6502368*x^8 + ... + A375449(n)*x^n + ...
Further, let C(x) = x*B'(x)/(1 - B(x)) = x + 7*x^2 + 55*x^3 + 547*x^4 + 7081*x^5 + 116821*x^6 + 2351497*x^7 + 55390315*x^8 + ...
then the coefficient of x^n in C(x) equals the sum of the initial n terms of A(x)^n for n >= 1; 1 = 1, 7 = 1 + 6, 55 = 1 + 9 + 45, 547 = 1 + 12 + 78 + 456, 7081 = 1 + 15 + 120 + 795 + 6150, etc.
PROG
(PARI) {a(n) = my(A=[1], m, V); for(i=0, n, A = concat(A, 0); m=#A; V=Vec( subst(Ser(A)^m, x, x/m) );
A[m] = (m^2 - sum(k=1, #V, V[k]) )*m^(m-2) ); H=A; A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A101142 A298679 A261885 * A186750 A203715 A249875
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 12 2024
STATUS
approved