login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of the g.f. A(x) with the property that the sum of the first n coefficients in A(x/n)^n equals n^2 for n >= 1.
3

%I #12 Sep 13 2024 06:36:56

%S 1,3,6,33,357,5283,96534,2067312,50345955,1367512761,40875976152,

%T 1331343423234,46892513148468,1775323414999818,71885746640828286,

%U 3100014000785085216,141857882269044077865,6866221878372182554395,350521791594556907681202,18824690900373744731703396

%N Expansion of the g.f. A(x) with the property that the sum of the first n coefficients in A(x/n)^n equals n^2 for n >= 1.

%H Paul D. Hanna, <a href="/A375448/b375448.txt">Table of n, a(n) for n = 0..300</a>

%F G.f. A(x) satisfies [x^n] x*B'(x/n) / (1 - n*B(x/n)) = n^2 for n >= 1, where B(x/A(x)) = x and B(x) is the g.f. of A375449.

%F a(n) ~ c * n^(n+1), where c = 0.5698891168602..., conjecture: c = (exp(1)-1)/exp(3*exp(-1)). - _Vaclav Kotesovec_, Sep 13 2024

%e G.f.: A(x) = 1 + 3*x + 6*x^2 + 33*x^3 + 357*x^4 + 5283*x^5 + 96534*x^6 + 2067312*x^7 + 50345955*x^8 + 1367512761*x^9 + 40875976152*x^10 + ...

%e The defining property of g.f. A(x) is described below.

%e The table of coefficients in A(x)^n begins:

%e n=1: [1, 3, 6, 33, 357, 5283, 96534, ...];

%e n=2: [1, 6, 21, 102, 948, 13104, 230139, ...];

%e n=3: [1, 9, 45, 234, 1935, 24678, 414234, ...];

%e n=4: [1, 12, 78, 456, 3561, 41868, 667746, ...];

%e n=5: [1, 15, 120, 795, 6150, 67428, 1017540, ...];

%e n=6: [1, 18, 171, 1278, 10107, 105246, 1501578, ...];

%e n=7: [1, 21, 231, 1932, 15918, 160587, 2172807, ...];

%e ...

%e in which the sum of the first n coefficients in A(x/n)^n equals n^2, as illustrated by

%e 1 = 1;

%e 4 = 1 + 6/2;

%e 9 = 1 + 9/3 + 45/3^2;

%e 16 = 1 + 12/4 + 78/4^2 + 456/4^3;

%e 25 = 1 + 15/5 + 120/5^2 + 795/5^3 + 6150/5^4;

%e 36 = 1 + 18/6 + 171/6^2 + 1278/6^3 + 10107/6^4 + 105246/6^5;

%e 49 = 1 + 21/7 + 231/7^2 + 1932/7^3 + 15918/7^4 + 160587/7^5 + 2172807/7^6;

%e ...

%e RELATED SERIES.

%e Let B(x) be the series reversion of x/A(x), B(x/A(x)) = x, then

%e B(x) = x + 3*x^2 + 15*x^3 + 114*x^4 + 1230*x^5 + 17541*x^6 + 310401*x^7 + 6502368*x^8 + ... + A375449(n)*x^n + ...

%e Further, let C(x) = x*B'(x)/(1 - B(x)) = x + 7*x^2 + 55*x^3 + 547*x^4 + 7081*x^5 + 116821*x^6 + 2351497*x^7 + 55390315*x^8 + ...

%e then the coefficient of x^n in C(x) equals the sum of the initial n terms of A(x)^n for n >= 1; 1 = 1, 7 = 1 + 6, 55 = 1 + 9 + 45, 547 = 1 + 12 + 78 + 456, 7081 = 1 + 15 + 120 + 795 + 6150, etc.

%o (PARI) {a(n) = my(A=[1], m, V); for(i=0, n, A = concat(A, 0); m=#A; V=Vec( subst(Ser(A)^m, x, x/m) );

%o A[m] = (m^2 - sum(k=1, #V, V[k]) )*m^(m-2) ); H=A; A[n+1]}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A375449, A375457.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Sep 12 2024