The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003988 Triangle with subscripts (1,1),(2,1),(1,2),(3,1),(2,2),(1,3), etc. in which entry (i,j) is [ i/j ]. 5
 1, 2, 0, 3, 1, 0, 4, 1, 0, 0, 5, 2, 1, 0, 0, 6, 2, 1, 0, 0, 0, 7, 3, 1, 1, 0, 0, 0, 8, 3, 2, 1, 0, 0, 0, 0, 9, 4, 2, 1, 1, 0, 0, 0, 0, 10, 4, 2, 1, 1, 0, 0, 0, 0, 0, 11, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 12, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 13, 6, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 14, 6, 4, 2, 2, 1, 1, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Another version of A010766. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..5050 FORMULA From  Franklin T. Adams-Watters, Jan 28 2006: (Start) T(n,k) = Sum_{i=1..k} A077049(n,i). G.f.: (1/(1-x))*Sum_{k>0} x^k*y^k/(1-x^k) = (1/(1-x))*Sum_{k>0} x^k * y / (1 - x^k y) = (1/(1-x)) * Sum_{k>0} x^k * Sum_{d|k} y^d = A(x,y)/(1-x) where A(x,y) is the g.f. of A077049. (End) T(n,k) = floor((n + 1 - k) / k). - Reinhard Zumkeller, Apr 13 2012 MATHEMATICA t[n_, k_] := Quotient[n, k]; Table[t[n-k+1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 21 2013 *) PROG (Haskell) a003988 n k = (n + 1 - k) `div` k a003988_row n = zipWith div [n, n-1..1] [1..n] a003988_tabl = map a003988_row [1..] -- Reinhard Zumkeller, Apr 13 2012 CROSSREFS Cf. A010766, A003056, A049581, A003991, A004247, A077049. Row sums are in A006218. Antidiagonal sums are in A002541. Sequence in context: A220645 A127374 A098862 * A185914 A144257 A257232 Adjacent sequences:  A003985 A003986 A003987 * A003989 A003990 A003991 KEYWORD tabl,nonn,easy,nice AUTHOR EXTENSIONS More terms from James A. Sellers STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 18 02:34 EDT 2022. Contains 356204 sequences. (Running on oeis4.)