login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372506
Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-2*x) )^n.
1
1, 3, 23, 198, 1795, 16758, 159446, 1537308, 14967843, 146833830, 1449054178, 14369723316, 143072565454, 1429331585724, 14320668653580, 143838879376248, 1447883909314851, 14602334949928710, 147518977428892010, 1492559101878005700, 15121898521185194970
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(3*n-1,n-k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) * (1-2*x) ).
a(n) ~ (1 + sqrt(3)) * 2^(n - 3/2) * 3^((3*n-1)/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 04 2024
D-finite with recurrence 5*n*(n-1)*a(n) +18*(n-1)*(n-3)*a(n-1) +12*(-45*n^2+90*n-22)*a(n-2) -216*(3*n-7)*(3*n-8)*a(n-3)=0. - R. J. Mathar, Oct 24 2024
MAPLE
A372506 := proc(n)
add(binomial(n+k-1, k)*binomial(3*n-1, n-k), k=0..n) ;
end proc:
seq(A372506(n), n=0..80) ; # R. J. Mathar, Oct 24 2024
MATHEMATICA
Table[SeriesCoefficient[1/((1 - x)*(1 - 2*x))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
Table[Binomial[3*n - 1, n] * Hypergeometric2F1[-n, n, 2*n, -1], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
PROG
(PARI) a(n, s=1, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 04 2024
STATUS
approved