OFFSET
1,1
COMMENTS
Primes of the form 2^n*(n+1)! - 1.
a(9) has 193 digits, a(10) has 230 digits. - Vincenzo Librandi, Mar 08 2015
FORMULA
Starting with 4, multiply even composites until the product minus 1 equals a prime.
EXAMPLE
a(1) = 3 = 2*2! - 1.
a(2) = 23 = 2^2*3! - 1.
a(3) = 191 = 2^3*4! - 1.
a(4) = 23039 = 2^5*6! - 1.
a(5) = 322559 = 2^6*7! - 1.
a(6) = 5160959 = 2^7*8! - 1.
a(7) = 40874803199 = 2^10*11! - 1.
a(8) = 25505877196799 = 2^12*13! - 1.
a(9) = 2^101*102! - 1 is too large to include.
a(10) = 2^117*118! - 1; a(11) = 2^227*228! - 1. - Jorge Coveiro, Dec 24 2004
MATHEMATICA
Select[Table[2^n (n + 1)! - 1, {n, 0, 300}], PrimeQ] (* Vincenzo Librandi, Mar 08 2015 *)
PROG
(PARI) for(x=1, 500, if(isprime(2^x*(x+1)!-1), print1(x, ", "))) \\ Jorge Coveiro, Dec 24 2004
(Magma) [a: n in [0..100] | IsPrime(a) where a is 2^n*Factorial(n+1)-1]; // Vincenzo Librandi, Mar 08 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Mar 25 2004
EXTENSIONS
Edited by Ray Chandler, Mar 27 2004
The next term is too large to include.
STATUS
approved