login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372353
Array read by upward antidiagonals: A(n, k) = A372352(A372282(n, k)), n,k >= 1.
5
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 24, 4, 0, 0, 0, 256, 32, 6, 0, 0, 0, 0, 6144, 16, 0, 0, 0, 0, 0, 16777216, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 896, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6144, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16777216, 0, 56, 4
OFFSET
1,10
COMMENTS
Zeros occur in the same locations where 1's occur in array A372287.
EXAMPLE
Array begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13
---+---------------------------------------------------------------------------
1 | 0, 0, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4,
2 | 0, 0, 0, 24, 32, 16, 0, 8, 0, 32, 0, 56, 96,
3 | 0, 0, 0, 256, 6144, 0, 0, 896, 0, 6144, 0, 0, 8192,
4 | 0, 0, 0, 0, 16777216, 0, 0, 0, 0, 16777216, 0, 0, 402653184,
5 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 72057594037927936,
6 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
PROG
(PARI)
up_to = 91;
A086893(n) = (if(n%2, 2^(n+1), 2^(n+1)+2^(n-1))\3); \\ From A086893
A372352(n) = { my(k); for(i=1, oo, k=A086893(i); if(k>n, return(n-A086893(i-1)))); };
A371094(n) = { my(m=1+3*n, e=valuation(m, 2)); ((m*(2^e)) + (((4^e)-1)/3)); };
A372282sq(n, k) = if(1==n, 2*k-1, A371094(A372282sq(n-1, k)));
A372353sq(n, k) = A372352(A372282sq(n, k));
A372353list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A372353sq((a-(col-1)), col))); (v); };
v372353 = A372353list(up_to);
A372353(n) = v372353[n];
CROSSREFS
Cf. also A372285 and A372355 (columnwise first differences).
Sequence in context: A209401 A029696 A118887 * A372359 A057383 A218881
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Apr 29 2024
STATUS
approved