login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372060
a(n) = smallest k such that A252867(k) = n, or -1 if no such k exists.
3
0, 1, 2, 6, 5, 3, 9, 13, 12, 10, 4, 18, 7, 23, 16, 25, 22, 8, 11, 20, 28, 35, 32, 41, 14, 38, 43, 59, 30, 56, 53, 75, 17, 15, 27, 29, 19, 66, 39, 70, 21, 33, 36, 85, 49, 68, 51, 95, 24, 64, 45, 79, 47, 104, 98, 110, 62, 93, 73, 115, 106, 113, 108, 154, 42, 31, 34, 48, 37, 44
OFFSET
0,3
COMMENTS
Both A252867 and this sequence are conjectured to be permutations of the nonnegative integers, in which case they are inverses of each other.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 0..100000 (terms 0..9999 from N. J. A. Sloane)
MAPLE
A372060 := proc(n)
local i;
for i from 0 do
if A252867(i) = n then
return i ;
end if;
end do:
end proc:
for n from 0 do
printf("%d %d\n", n, A372060(n)) ; # b-style output
end do: # R. J. Mathar, May 02 2024
MATHEMATICA
kmax = 1000;
b[n_] := b[n] = Module[{k}, If[n < 3, n, For[k = 3, True, k++, If[FreeQ[Array[b, n - 1], k], If[BitAnd[k, b[n - 2]] >= 1 && BitAnd[k, b[n - 1]] == 0, Return[k]]]]]];
a[n_] := Module[{k}, For[k = 0, k <= kmax, k++, If[b[k] == n, Return[k]]]] /. Null -> -1;
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 10 2024 *)
PROG
(Python)
def A372060(n):
if n<3: return n
l1, l2, s, b, k = 2, 1, 3, set(), 3
while True:
for i in count(s):
if not (i in b or i & l1) and i & l2:
if i == n: return k
k += 1
l2, l1 = l1, i
b.add(i)
while s in b:
b.remove(s)
s += 1
break # Chai Wah Wu, May 02 2024
CROSSREFS
Cf. A252867.
Sequence in context: A157890 A329932 A359858 * A198821 A171897 A105029
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 01 2024
STATUS
approved