OFFSET
0,3
COMMENTS
Conjectured to be a permutation of the nonnegative integers. [Comment modified by N. J. A. Sloane, Jan 10 2015]
This is a purely set-based version of A098550, using the binary representation of numbers.
An equivalent definition in terms of sets: S(0) = {}, S(1) = {0}, S(2) = {1}; thereafter S(n) is the smallest set (different from the S(i) with i < n) of nonnegative integers such that S(n) meets S(n-2) but is disjoint from S(n-1). - N. J. A. Sloane, Mar 27 2022; corrected Aug 01 2022.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..50002 (First 10000 terms from Reinhard Zumkeller)
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and J. Int. Seq. 18 (2015) 15.6.7.
Chai Wah Wu, Scatterplot of first million terms
Chai Wah Wu, Scatterplot of first million terms, with red lines powers of 2.
Chai Wah Wu, Gzipped file with first million terms [Save file, delete .txt suffix, then open]
EXAMPLE
The sequence of sets is {}, {0}, {1}, {0,2}, {1,3}, {2}, {0,1}, {2,3}. After the initial 3 terms, S(n) is the minimum set (as ordered by A048793) that has a nonempty intersection with S(n-2) but empty intersection with S(n-1). [Typos corrected by N. J. A. Sloane, Aug 01 2022 at the suggestion of Michel Dekking.]
Comment from N. J. A. Sloane, Dec 31 2014: The binary expansions of the first few terms are:
0 = 000000
1 = 000001
2 = 000010
5 = 000101
10 = 001010
4 = 000100
3 = 000011
12 = 001100
17 = 010001
6 = 000110
9 = 001001
18 = 010010
8 = 001000
7 = 000111
24 = 011000
33 = 100001
14 = 001110
32 = 100000
11 = 001011
36 = 100100
19 = 010011
40 = 101000
...
MAPLE
read("transforms") : # define ANDnos
A252867 := proc(n)
local a, known, i ;
option remember;
if n <=2 then
n;
else
for a from 3 do
known := false ;
for i from 1 to n-1 do
if procname(i) = a then
known := true;
break;
end if;
end do:
if not known then
if ANDnos(a, procname(n-1)) = 0 and ANDnos(a, procname(n-2)) > 0 then
return a;
end if;
end if;
end do:
end if
end proc:
seq(A252867(n), n=0..200) ; # R. J. Mathar, May 02 2024
MATHEMATICA
a[n_] := a[n] = If[n<3, n, For[k=3, True, k++, If[FreeQ[Array[a, n-1], k], If[BitAnd[k, a[n-2]] >= 1 && BitAnd[k, a[n-1]] == 0, Return[k]]]]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 03 2018 *)
PROG
(PARI) invecn(v, k, x)=for(i=1, k, if(v[i]==x, return(i))); 0
alist(n)=local(v=vector(n, i, i-1), x); for(k=4, n, x=3; while(invecn(v, k-1, x)||!bitand(v[k-2], x)||bitand(v[k-1], x), x++); v[k]=x); v
(Haskell)
import Data.Bits ((.&.)); import Data.List (delete)
a252867 n = a252867_list !! n
a252867_list = 0 : 1 : 2 : f 1 2 [3..] where
f :: Int -> Int -> [Int] -> [Int]
f u v ws = g ws where
g (x:xs) = if x .&. u > 0 && x .&. v == 0
then x : f v x (delete x ws) else g xs
-- Reinhard Zumkeller, Dec 24 2014
(Python)
A252867_list, l1, l2, s, b = [0, 1, 2], 2, 1, 3, set()
for _ in range(10**2):
i = s
while True:
if not (i in b or i & l1) and i & l2:
A252867_list.append(i)
l2, l1 = l1, i
b.add(i)
while s in b:
b.remove(s)
s += 1
break
i += 1 # Chai Wah Wu, Dec 27 2014
CROSSREFS
The graphs of A109812, A252867, A305369, A305372 all have roughly the same, mysterious, fractal-like structure. - N. J. A. Sloane, Jun 03 2018
KEYWORD
AUTHOR
Franklin T. Adams-Watters, Dec 23 2014
STATUS
approved