OFFSET
0,2
COMMENTS
All terms are distinct, but the numbers 2^m - 1 are missing.
a(n) = Sum_{k>=1} B(n+k-1,k)*2^(A103586(n)-k) where B(n,k) n>=1, k>=1 is the infinite array:
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
.......
where n-th row consists of binary expansion of n followed by 0's.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
EXAMPLE
0
1
1 0
1 1
1 0 0
1 0 1
1 1 0
1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
and reading the diagonals downwards we get 0, 10, 110, 101, 100, 1110, 1101, etc.
PROG
(Haskell)
import Data.Bits ((.|.), (.&.))
a105029 n = foldl (.|.) 0 $ zipWith (.&.) a000079_list $
map (\x -> (len + 1 - a070939 x) * x)
(reverse $ enumFromTo n (n - 1 + len)) where len = a103586 n
-- Reinhard Zumkeller, Jul 21 2012
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Benoit Cloitre, Apr 03 2005
STATUS
approved