OFFSET
0,3
COMMENTS
This is a permutation of the nonnegative integers.
Structure: blocks of size 2^k - 1 taken from A102370, interspersed with terms of A102371. - Philippe Deléham, Nov 17 2007
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
FORMULA
a(2^n - 1) = A102371(n) for n > 0. - Philippe Deléham, May 10 2005
EXAMPLE
0
1
10
11
-> 100 Starting here, the upward diagonals
101 read 110, 101, 100, 111, giving the block 6, 5, 4, 7.
110
111
1000
1001
1010
1011
...
MATHEMATICA
block[k_] := Module[{t}, t = Table[PadLeft[IntegerDigits[n, 2], k+1], {n, 2^(k-1), 2^(k+1)-1}]; Table[FromDigits[Table[t[[n-m+1, m]], {m, 1, k+1}], 2], {n, 2^(k-1)+1, 2^(k-1)+2^k}]]; block[0] = {0, 1}; Table[block[k], {k, 0, 6}] // Flatten (* Jean-François Alcover, Jun 30 2015 *)
PROG
(Haskell)
import Data.Bits ((.|.), (.&.))
a105027 n = foldl (.|.) 0 $ zipWith (.&.)
a000079_list $ enumFromTo (n + 1 - a070939 n) n
-- Reinhard Zumkeller, Jul 21 2012
(PARI) apply( {A105027(n, L=exponent(n+!n))=sum(k=0, L, bitand(n+k-L, 2^k))}, [0..55]) \\ M. F. Hasler, Apr 18 2022
CROSSREFS
KEYWORD
nonn,nice,base
AUTHOR
N. J. A. Sloane, Apr 03 2005
EXTENSIONS
More terms from John W. Layman, Apr 07 2005
STATUS
approved