login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371532
Centered cuboctahedral numbers: the number of integer triples (x,y,z) such that max(|x|,|y|,|z|) <= n and |x|+|y|+|z| <= 2n.
2
1, 19, 93, 263, 569, 1051, 1749, 2703, 3953, 5539, 7501, 9879, 12713, 16043, 19909, 24351, 29409, 35123, 41533, 48679, 56601, 65339, 74933, 85423, 96849, 109251, 122669, 137143, 152713, 169419, 187301, 206399, 226753, 248403, 271389, 295751, 321529, 348763
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Cuboctahedron.
Eric Weisstein's World of Mathematics, Figurate Number.
Wikipedia, Ehrhart polynomial.
FORMULA
a(n) = (20*n^3 + 24*n^2 + 10*n + 3)/3.
a(n) = A016755(n) - A130809(n-2).
G.f.: (x^3 + 23*x^2 + 15*x + 1) / (x-1)^4. - Paolo Xausa, Apr 02 2024
EXAMPLE
The a(1) = 19 lattice points are all permutations of the points (0,0,0), (0,0,1), and (0,1,1), where any number of the coordinates can also be made negative (e.g., (1,-1,0)).
MATHEMATICA
Array[(20*#^3 + 24*#^2 + 10*# + 3)/3 &, 50, 0] (* or *)
LinearRecurrence[{4, -6, 4, -1}, {1, 19, 93, 263}, 50] (* Paolo Xausa, Apr 02 2024 *)
PROG
(Python)
def A371532(n): return n*(n*(5*n+6<<2)+10)//3+1 # Chai Wah Wu, Apr 02 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Kagey, Mar 26 2024
STATUS
approved