login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A109513
Let k be an m-digit integer. Then k is a Pithy number if the k-th m-tuple in the decimal digits of Pi (after the decimal point) is the string k.
12
1, 19, 94, 3542, 7295, 318320, 927130, 939240, 688370303, 7682437410, 7996237896, 89594051933
OFFSET
0,2
EXAMPLE
1 is a term because the first digit in Pi (after the decimal point) is 1.
19 is a term because the 19th pair of digits (after the decimal point) in Pi is 19:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
3. 14 15 92 65 35 89 79 32 38 46 26 43 38 32 79 50 28 84 19 ...
MATHEMATICA
PithyNumbers[m_] := Module[{cc = m(10^m)+m, sol, aa}, sol = Partition[RealDigits[Pi, 10, cc] // First // Rest, m]; Do[aa = FromDigits[sol[[i]]]; If[aa==i, Print[{i, aa}]], {i, Length[sol]}]; ] Example: PithyNumbers[4] produces all 4-digit Pithy numbers
CROSSREFS
KEYWORD
base,more,nonn
AUTHOR
Colin Rose, Jul 01 2005
EXTENSIONS
a(8)-a(11) from J. Volkmar Schmidt, Dec 17 2023
STATUS
approved