OFFSET
6,7
LINKS
Chai Wah Wu, Table of n, a(n) for n = 6..200
Hugo Pfoertner, Plot of ratio a(n)/A208454(n), using Plot 2. Is the asymptotic ratio for n->oo finite or 0?
FORMULA
a(n) <= A208454(n).
PROG
(PARI) a371070(n) = {my (L=List()); forpart (w=n, forperm (w, v, if(v[4]+v[5]<v[6], next); if(v[4]+v[6]<v[5], next); if(v[5]+v[6]<v[4], next); if(v[1]+v[2]<v[4], next); if(v[1]+v[4]<v[2], next); if(v[2]+v[4]<v[1], next); if(v[1]+v[3]<v[5], next); if(v[1]+v[5]<v[3], next); if(v[3]+v[5]<v[1], next); if(v[2]+v[3]<v[6], next); if(v[2]+v[6]<v[3], next); if(v[3]+v[6]<v[2], next); my(CM=matdet ([0, 1, 1, 1, 1; 1, 0, v[1]^2, v[2]^2, v[3]^2; 1, v[1]^2, 0, v[4]^2, v[5]^2; 1, v[2]^2, v[4]^2, 0, v[6]^2; 1, v[3]^2, v[5]^2, v[6]^2, 0])); if (CM>0, listput (L, CM))), [1, n], [6, 6]); #Set(Vec(L))};
(Python)
from collections import Counter
from sympy.utilities.iterables import partitions, multiset_permutations
def A371070(n):
CM = lambda x, y, z, t, u, v: (x*y*z<<2)+(a:=x+y-t)*(b:=x+z-u)*(c:=y+z-v)-x*c**2-y*b**2-z*a**2
TR1 = lambda x, y, z: not(x+y<z or x+z<y or y+z<x)
TR = lambda x, y, z, t, u, v: TR1(t, u, v) and TR1(x, y, t) and TR1(x, z, u) and TR1(y, z, v)
c, d, sq = 0, set(), tuple(x**2 for x in range(n+1))
for s, w in partitions(n, m=6, k=n-5, size=True):
if s == 6:
for v in multiset_permutations(Counter(w).elements()):
if TR(*v) and (M:=CM(sq[v[0]], sq[v[1]], sq[v[2]], sq[v[3]], sq[v[4]], sq[v[5]]))>0 and M not in d:
d.add(M)
c += 1
return c # Chai Wah Wu, Mar 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Mar 18 2024
STATUS
approved