login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of distinct volumes > 0 of tetrahedra with the sum of their integer edge lengths equal to n.
6

%I #22 Apr 04 2024 10:16:02

%S 1,0,0,1,1,1,3,2,3,6,5,7,12,10,16,19,21,26,34,37,44,56,60,67,93,92,

%T 111,137,140,166,192,211,246,279,306,333,392,428,464,538,565,627,709,

%U 768,826,939,998,1089,1230,1312,1403,1590,1658,1798,1987,2088,2266,2495

%N a(n) is the number of distinct volumes > 0 of tetrahedra with the sum of their integer edge lengths equal to n.

%H Chai Wah Wu, <a href="/A371070/b371070.txt">Table of n, a(n) for n = 6..200</a>

%H Hugo Pfoertner, <a href="/plot2a?name1=A371070&amp;name2=A208454&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=0&amp;radiop1=ratio&amp;drawpoints=true">Plot of ratio a(n)/A208454(n)</a>, using Plot 2. Is the asymptotic ratio for n->oo finite or 0?

%F a(n) <= A208454(n).

%o (PARI) a371070(n) = {my (L=List()); forpart (w=n, forperm (w,v, if(v[4]+v[5]<v[6],next); if(v[4]+v[6]<v[5],next); if(v[5]+v[6]<v[4],next); if(v[1]+v[2]<v[4],next); if(v[1]+v[4]<v[2],next); if(v[2]+v[4]<v[1],next); if(v[1]+v[3]<v[5],next); if(v[1]+v[5]<v[3],next); if(v[3]+v[5]<v[1],next); if(v[2]+v[3]<v[6],next); if(v[2]+v[6]<v[3],next); if(v[3]+v[6]<v[2],next); my(CM=matdet ([0,1,1,1,1; 1,0,v[1]^2,v[2]^2,v[3]^2; 1,v[1]^2,0,v[4]^2,v[5]^2; 1,v[2]^2,v[4]^2,0,v[6]^2; 1,v[3]^2,v[5]^2,v[6]^2,0])); if (CM>0, listput (L,CM))), [1,n], [6,6]); #Set(Vec(L))};

%o (Python)

%o from collections import Counter

%o from sympy.utilities.iterables import partitions, multiset_permutations

%o def A371070(n):

%o CM = lambda x,y,z,t,u,v: (x*y*z<<2)+(a:=x+y-t)*(b:=x+z-u)*(c:=y+z-v)-x*c**2-y*b**2-z*a**2

%o TR1 = lambda x,y,z: not(x+y<z or x+z<y or y+z<x)

%o TR = lambda x,y,z,t,u,v: TR1(t,u,v) and TR1(x,y,t) and TR1(x,z,u) and TR1(y,z,v)

%o c, d, sq = 0, set(), tuple(x**2 for x in range(n+1))

%o for s, w in partitions(n,m=6,k=n-5,size=True):

%o if s == 6:

%o for v in multiset_permutations(Counter(w).elements()):

%o if TR(*v) and (M:=CM(sq[v[0]],sq[v[1]],sq[v[2]],sq[v[3]],sq[v[4]],sq[v[5]]))>0 and M not in d:

%o d.add(M)

%o c += 1

%o return c # _Chai Wah Wu_, Mar 23 2024

%Y Cf. A001402, A097125, A208454, A346575, A371071, A371345.

%K nonn

%O 6,7

%A _Hugo Pfoertner_, Mar 18 2024