login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371026
Triangle read by rows: T(n, k) = 4^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j)* Pochhammer(j/4, n).
3
1, 0, 1, 0, 5, 2, 0, 45, 30, 6, 0, 585, 510, 180, 24, 0, 9945, 10350, 4950, 1200, 120, 0, 208845, 247590, 144900, 48600, 9000, 720, 0, 5221125, 6855030, 4655070, 1940400, 504000, 75600, 5040, 0, 151412625, 216093150, 164872260, 80713080, 26334000, 5594400, 705600, 40320
OFFSET
0,5
FORMULA
T(n, k) = k * T(n-1, k-1) + (4*n - 4 + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = n! for n >= 0. - Werner Schulte, Mar 17 2024
EXAMPLE
Triangle read by rows:
[0] 1;
[1] 0, 1;
[2] 0, 5, 2;
[3] 0, 45, 30, 6;
[4] 0, 585, 510, 180, 24;
[5] 0, 9945, 10350, 4950, 1200, 120;
[6] 0, 208845, 247590, 144900, 48600, 9000, 720;
[7] 0, 5221125, 6855030, 4655070, 1940400, 504000, 75600, 5040;
MAPLE
A371026 := (n, k) -> local j; 4^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/4, n), j = 0..k): seq(seq(A371026(n, k), k = 0..n), n = 0..9);
PROG
(Python)
from functools import cache
@cache
def T(n, k): # After Werner Schulte
if k == 0: return 0**n
if k == n: return n * T(n-1, n-1)
return k * T(n-1, k-1) + (4*n - 4 + k) * T(n-1, k)
for n in range(8): print([T(n, k) for k in range(n + 1)])
# Peter Luschny, Mar 17 2024
CROSSREFS
Cf. A000142 (main diagonal), A007696 (column 1), A371027 (row sums).
Cf. A371025.
Sequence in context: A319231 A058512 A111560 * A324609 A211991 A354596
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 08 2024
STATUS
approved