login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A371029
Numbers m such that if k = 27*m^3 + 3*m then k-1 and k+1 are primes.
0
1, 5, 6, 7, 13, 29, 39, 40, 45, 81, 120, 122, 127, 142, 143, 205, 214, 241, 293, 334, 341, 390, 391, 408, 486, 502, 506, 510, 577, 632, 640, 655, 669, 675, 686, 711, 720, 792, 793, 794, 802, 851, 859, 891, 901, 909, 972, 974, 992, 1000, 1041, 1078, 1082, 1096, 1099, 1111, 1206, 1258, 1280, 1423
OFFSET
1,2
COMMENTS
Conjecture: this sequence is infinite.
EXAMPLE
1 is this sequence because 27*1^3 + 3*1 = 30 has 2 prime neighbors 29 and 31.
MATHEMATICA
Select[Range[1500], And @@ PrimeQ[27*#^3 + 3*# + {-1, 1}] &] (* Amiram Eldar, Mar 26 2024 *)
PROG
(Magma) [m: m in [1..1500] | IsPrime(27*m^3+3*m-1) and IsPrime(27*m^3+3*m+1)];
CROSSREFS
Numbers m such that (n*m)^n + n*m has 2 prime neighbors: A040040 (n=1); no sequence (n=2) in OEIS; this sequence (n=3); no sequence (n=4) in OEIS.
Sequence in context: A067531 A031029 A134985 * A111018 A326132 A342630
KEYWORD
nonn
AUTHOR
STATUS
approved