login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k) = 4^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j)* Pochhammer(j/4, n).
3

%I #10 Mar 17 2024 18:32:05

%S 1,0,1,0,5,2,0,45,30,6,0,585,510,180,24,0,9945,10350,4950,1200,120,0,

%T 208845,247590,144900,48600,9000,720,0,5221125,6855030,4655070,

%U 1940400,504000,75600,5040,0,151412625,216093150,164872260,80713080,26334000,5594400,705600,40320

%N Triangle read by rows: T(n, k) = 4^n*Sum_{j=0..k} (-1)^(k - j)*binomial(k, j)* Pochhammer(j/4, n).

%F T(n, k) = k * T(n-1, k-1) + (4*n - 4 + k) * T(n-1, k) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = n! for n >= 0. - _Werner Schulte_, Mar 17 2024

%e Triangle read by rows:

%e [0] 1;

%e [1] 0, 1;

%e [2] 0, 5, 2;

%e [3] 0, 45, 30, 6;

%e [4] 0, 585, 510, 180, 24;

%e [5] 0, 9945, 10350, 4950, 1200, 120;

%e [6] 0, 208845, 247590, 144900, 48600, 9000, 720;

%e [7] 0, 5221125, 6855030, 4655070, 1940400, 504000, 75600, 5040;

%p A371026 := (n, k) -> local j; 4^n*add((-1)^(k - j)*binomial(k, j)*pochhammer(j/4, n), j = 0..k): seq(seq(A371026(n, k), k = 0..n), n = 0..9);

%o (Python)

%o from functools import cache

%o @cache

%o def T(n, k): # After _Werner Schulte_

%o if k == 0: return 0**n

%o if k == n: return n * T(n-1, n-1)

%o return k * T(n-1, k-1) + (4*n - 4 + k) * T(n-1, k)

%o for n in range(8): print([T(n, k) for k in range(n + 1)])

%o # _Peter Luschny_, Mar 17 2024

%Y Cf. A000142 (main diagonal), A007696 (column 1), A371027 (row sums).

%Y Cf. A371025.

%K nonn,tabl

%O 0,5

%A _Peter Luschny_, Mar 08 2024