login
A370994
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2*log(1-x)) ).
5
1, 0, 0, 6, 12, 40, 3060, 23688, 191520, 9698400, 158548320, 2304973440, 100716073920, 2627516361600, 58513944513024, 2512156283683200, 89046056086041600, 2739316757454950400, 124170651534918297600, 5440968468533003212800, 215067442349096186572800
OFFSET
0,4
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (n+k)! * |Stirling1(n-2*k,k)|/(n-2*k)!.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^2*log(1-x)))/x))
(PARI) a(n) = sum(k=0, n\3, (n+k)!*abs(stirling(n-2*k, k, 1))/(n-2*k)!)/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 06 2024
STATUS
approved