login
A370996
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 + x^2/2*log(1-x)) ).
1
1, 0, 0, 3, 6, 20, 810, 6174, 49560, 1439640, 22060080, 312487560, 8687891520, 199853503200, 4216976539776, 126706600944000, 3771722349158400, 106462579493088000, 3626324277349651200, 129806833608095575680, 4565069619653632320000
OFFSET
0,4
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} (n+k)! * |Stirling1(n-2*k,k)|/(2^k * (n-2*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1+x^2/2*log(1-x)))/x))
(PARI) a(n) = sum(k=0, n\3, (n+k)!*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!))/(n+1);
CROSSREFS
Cf. A351505.
Sequence in context: A356752 A355874 A356967 * A328567 A064366 A260157
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 06 2024
STATUS
approved