login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356970
E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(x^2 * A(x)).
1
1, 0, 0, 6, 12, 40, 1980, 16128, 136080, 4224960, 70943040, 1087178400, 31274100000, 784834652160, 18115033128192, 565994928945600, 18161466717139200, 560655551681971200, 20108422243585658880, 769928646324249699840, 29464638272901949824000
OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} (n-k+1)^(k-1) * |Stirling1(n-2*k,k)|/(n-2*k)!.
MATHEMATICA
m = 21; (* number of terms *)
A[_] = 0;
Do[A[x_] = 1/(1 - x*A[x])^(x^2*A[x]) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\3, (n-k+1)^(k-1)*abs(stirling(n-2*k, k, 1))/(n-2*k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 07 2022
STATUS
approved