OFFSET
1,5
COMMENTS
All cycles are of length 4.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Antelope Graph
Eric Weisstein's World of Mathematics, Chordless Cycle
Eric Weisstein's World of Mathematics, Graph Complement
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 2*(4*n^4-56*n^3+185*n^2+903*n-5142) for n > 11.
From Chai Wah Wu, Feb 10 2024: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 16.
G.f.: x^5*(-80*x^11 + 120*x^10 + 152*x^9 - 192*x^8 - 168*x^7 + 284*x^6 - 112*x^5 - 72*x^4 + 44*x^3 - 12*x^2 - 132*x - 24)/(x - 1)^5. (End)
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 24, 252, 1032, 2836, 6332, 12496, 22328, 37020, 58148, 87520, 127056, 178868}, 50] (* Paolo Xausa, Mar 15 2024 *)
PROG
(Python)
def A370110(n): return (0, 0, 0, 0, 24, 252, 1032, 2836, 6332, 12496, 22328)[n-1] if n<12 else n*(n*(n*(4*n - 56) + 185) + 903) - 5142<<1 # Chai Wah Wu, Feb 10 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Feb 10 2024
STATUS
approved