login
A370110
Number of chordless cycles in the complement of the n X n antelope graph.
1
0, 0, 0, 0, 24, 252, 1032, 2836, 6332, 12496, 22328, 37020, 58148, 87520, 127056, 178868, 245260, 328728, 431960, 557836, 709428, 890000, 1103008, 1352100, 1641116, 1974088, 2355240, 2788988, 3279940, 3832896
OFFSET
1,5
COMMENTS
All cycles are of length 4.
LINKS
Eric Weisstein's World of Mathematics, Antelope Graph
Eric Weisstein's World of Mathematics, Chordless Cycle
Eric Weisstein's World of Mathematics, Graph Complement
FORMULA
a(n) = 2*(4*n^4-56*n^3+185*n^2+903*n-5142) for n > 11.
From Chai Wah Wu, Feb 10 2024: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 16.
G.f.: x^5*(-80*x^11 + 120*x^10 + 152*x^9 - 192*x^8 - 168*x^7 + 284*x^6 - 112*x^5 - 72*x^4 + 44*x^3 - 12*x^2 - 132*x - 24)/(x - 1)^5. (End)
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 0, 24, 252, 1032, 2836, 6332, 12496, 22328, 37020, 58148, 87520, 127056, 178868}, 50] (* Paolo Xausa, Mar 15 2024 *)
PROG
(Python)
def A370110(n): return (0, 0, 0, 0, 24, 252, 1032, 2836, 6332, 12496, 22328)[n-1] if n<12 else n*(n*(n*(4*n - 56) + 185) + 903) - 5142<<1 # Chai Wah Wu, Feb 10 2024
CROSSREFS
Sequence in context: A296648 A265858 A282859 * A000594 A278577 A022716
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Feb 10 2024
STATUS
approved