login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370107
Expansion of (1/x) * Series_Reversion( x / ((1-x)^2 * (1+x)^3) ).
2
1, 1, -1, -7, -10, 27, 152, 169, -949, -4286, -2646, 36499, 133684, -376, -1458768, -4325495, 3422105, 59242995, 139491393, -260949134, -2414487452, -4307455022, 15274866472, 97910544003, 119082795965, -805538039024, -3921641157424, -2408010178616, 40104318820288
OFFSET
0,4
FORMULA
G.f.: exp( Sum_{k>=1} A370106(k) * x^k/k ).
a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(2*(n+1),k) * binomial(3*(n+1),n-k).
a(n) = (1/(n+1)) * [x^n] ( (1-x)^2 * (1+x)^3 )^(n+1).
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k * binomial(2*(n+1), k)*binomial(3*(n+1), n-k))/(n+1);
(PARI) my(x='x+O('x^30)); Vec(serreverse(x/((1-x)^2*(1+x)^3))/x) \\ Michel Marcus, Feb 10 2024
CROSSREFS
Cf. A370106.
Sequence in context: A064950 A240795 A058532 * A280966 A360430 A174466
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 10 2024
STATUS
approved