login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370109
a(n) = n^2*(2*n^2-23).
0
-21, -60, -45, 144, 675, 1764, 3675, 6720, 11259, 17700, 26499, 38160, 53235, 72324, 96075, 125184, 160395, 202500, 252339, 310800, 378819, 457380, 547515, 650304, 766875, 898404, 1046115, 1211280, 1395219, 1599300, 1824939, 2073600, 2346795, 2646084, 2973075
OFFSET
1,1
COMMENTS
For n > 5, also the number of chordless cycles (all of length 4) in the torus grid graph C_n square C_n.
LINKS
Eric Weisstein's World of Mathematics, Chordless Cycle
Eric Weisstein's World of Mathematics, Graph Complement
Eric Weisstein's World of Mathematics, Torus Grid Graph
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 3*(7-15*x-15*x^2+7*x^3)/(-1+x)^5.
MATHEMATICA
Table[n^2 (2 n^2 - 23), {n, 20}]
LinearRecurrence[{5, -10, 10, -5, 1}, {-21, -60, -45, 144, 675}, 20]
CoefficientList[Series[3 (7 - 15 x - 15 x^2 + 7 x^3)/(-1 + x)^5, {x, 0, 20}], x]
CROSSREFS
Sequence in context: A370519 A037305 A379182 * A223467 A051873 A223460
KEYWORD
sign,easy
AUTHOR
Eric W. Weisstein, Feb 10 2024
STATUS
approved