login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369767
Maximal coefficient of Product_{i=1..n} Sum_{j=0..n} x^(i*j).
1
1, 1, 2, 6, 31, 231, 2347, 29638, 449693, 7976253, 162204059, 3722558272, 95221978299, 2687309507102, 82967647793153, 2782190523572392, 100715040802229833, 3914979746952224303, 162662679830709439637, 7194483479557973730982, 337519906320930133470189
OFFSET
0,3
MAPLE
a:= n-> max(coeffs(expand(mul(add(x^(i*j), j=0..n), i=1..n)))):
seq(a(n), n=0..20); # Alois P. Heinz, Jan 31 2024
MATHEMATICA
Table[Max[CoefficientList[Product[Sum[x^(i j), {j, 0, n}], {i, 1, n}], x]], {n, 0, 20}]
PROG
(PARI) a(n) = vecmax(Vec(prod(i=1, n, sum(j=0, n, x^(i*j))))); \\ Michel Marcus, Jan 31 2024
(Python)
from collections import Counter
def A369767(n):
c = {j:1 for j in range(n+1)}
for i in range(2, n+1):
d = Counter()
for k in c:
for j in range(0, i*n+1, i):
d[j+k] += c[k]
c = d
return max(c.values()) # Chai Wah Wu, Jan 31 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 31 2024
STATUS
approved