login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369537
Expansion of g.f. A(x) satisfying A(x) = 1 + 4*x * AGM(A(x)^2, A(x)^4).
4
1, 4, 48, 784, 14784, 302960, 6554624, 147336384, 3407207936, 80538522544, 1937217000576, 47262640993344, 1166745699940352, 29090562313367104, 731508300407392256, 18530124876627212032, 472416442490053386240, 12112314681652019632304, 312110730162591314249088
OFFSET
0,2
COMMENTS
Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + 4*x * AGM(A(x)^2, A(x)^4).
(2) A(x) = 1 + 4*x * AGM(A(x)^3, (A(x)^2 + A(x)^4)/2).
(3) A(x) = 1 + 4 * Series_Reversion( x / AGM((1 + 4*x)^2, (1 + 4*x)^4) ).
(4) A( x/AGM((1 + 4*x)^2, (1 + 4*x)^4) ) = 1 + 4*x.
a(n) ~ c * d^n / n^(3/2), where d = 28.0338265004083388867842940412535265992903265132288705384671366058202... and c = 0.21370406929731394715730174119301970236922500578435406822814969355660... - Vaclav Kotesovec, Jan 29 2024
EXAMPLE
G.f.: A(X) = 1 + 4*x + 48*x^2 + 784*x^3 + 14784*x^4 + 302960*x^5 + 6554624*x^6 + 147336384*x^7 + 3407207936*x^8 + 80538522544*x^9 + 1937217000576*x^10 + ...
RELATED SERIES.
x / AGM((1 + 4*x)^2, (1 + 4*x)^4) = x - 12*x^2 + 92*x^3 - 576*x^4 + 3220*x^5 - 16784*x^6 + 83536*x^7 - 402560*x^8 + 1894308*x^9 - 8751600*x^10 + ...
where A( x / AGM((1 + 4*x)^2, (1 + 4*x)^4) ) = 1 + 4*x.
A(x)^2 = 1 + 8*x + 112*x^2 + 1952*x^3 + 38144*x^4 + 799456*x^5 + 17566848*x^6 + 399375232*x^7 + 9315958784*x^8 + 221714573152*x^9 + ...
A(x)^3 = 1 + 12*x + 192*x^2 + 3568*x^3 + 72384*x^4 + 1554768*x^5 + 34760064*x^6 + 800484672*x^7 + 18858757632*x^8 + 452388579088*x^9 + ...
A(x)^4 = 1 + 16*x + 288*x^2 + 5696*x^3 + 120064*x^4 + 2646464*x^5 + 60279552*x^6 + 1407812352*x^7 + 33532936192*x^8 + 811514412736*x^9 + ...
(A(x)^2 + A(x)^4)/2 = 1 + 12*x + 200*x^2 + 3824*x^3 + 79104*x^4 + 1722960*x^5 + 38923200*x^6 + 903593792*x^7 + 21424447488*x^8 + 516614492944*x^9 + ...
MATHEMATICA
(* Calculation of constants {d, c}: *) {1/r, s*(s - 1) * Sqrt[(1 + s + s^2 + s^3)/(2*Pi*(4 + s + 2*s^2 + 2*s^3 - 14*s^4 + 9*s^5))]} /. FindRoot[{1 + 2*Pi*r*s^4 / EllipticK[1 - 1/s^4] == s, 2*Pi*r*(1 - 2*s^4) + (-1 + s) * EllipticE[1 - 1/s^4] + (-1 + s^4)*Pi*r*s/(-1 + s) == 0}, {r, 1/30}, {s, 3/2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 29 2024 *)
PROG
(PARI) /* From definition: A(x) = 1 + 4*x*AGM(A(x)^2, A(x)^4) */
{a(n) = my(A=1+4*x + x*O(x^n)); for(i=1, n, A = 1 + 4*x*agm(A^2, A^4)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* From formula: A(x) = 1 + 4*x*AGM(A(x)^3, (A(x)^2 + A(x)^4)/2) */
{a(n) = my(A=1+4*x + x*O(x^n)); for(i=1, n, A = 1 + 4*x*agm(A^3, (A^2 + A^4)/2)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* From A(x) = 1 + 4*Series_Reversion(x/AGM((1+4*x)^2, (1+4*x)^4)) */
{a(n) = my(A=1); A = 1 + 4*serreverse(x/agm((1+4*x)^2, (1+4*x)^4 +x*O(x^n))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2024
STATUS
approved