login
A371677
G.f. satisfies A(x) = 1 + x * A(x)^(5/2) * (1 + A(x)^(1/2))^2.
3
1, 4, 48, 772, 14256, 285380, 6023552, 131991940, 2974096544, 68475379204, 1603913377040, 38099316926340, 915619571011024, 22222175033464260, 543894269096547296, 13409307961403740420, 332707806061304185408, 8301493488646359256580
OFFSET
0,2
FORMULA
G.f. satisfies A(x) = ( 1 + x * A(x)^(5/2) * (1 + A(x)^(1/2)) )^2.
G.f.: B(x)^2 where B(x) is the g.f. of A363006.
a(n) = 2 * Sum_{k=0..n} binomial(n,k) * binomial(5*n+k+2,n)/(5*n+k+2).
PROG
(PARI) a(n, r=2, t=5, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 02 2024
STATUS
approved