OFFSET
0,2
FORMULA
G.f. satisfies A(x) = ( 1 + x * A(x)^(3/2) * (1 + A(x)^(1/2)) )^2.
G.f.: B(x)^2 where B(x) is the g.f. of A144097.
a(n) = 2 * Sum_{k=0..n} binomial(n,k) * binomial(3*n+k+2,n)/(3*n+k+2).
a(n) ~ sqrt((88 + 161*sqrt(2/5))/Pi) * (223 + 70*sqrt(10))^n / (n^(3/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Nov 28 2024
PROG
(PARI) a(n, r=2, t=3, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 02 2024
STATUS
approved