login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying A(x) = 1 + 4*x * AGM(A(x)^2, A(x)^4).
4

%I #12 Feb 17 2024 03:20:06

%S 1,4,48,784,14784,302960,6554624,147336384,3407207936,80538522544,

%T 1937217000576,47262640993344,1166745699940352,29090562313367104,

%U 731508300407392256,18530124876627212032,472416442490053386240,12112314681652019632304,312110730162591314249088

%N Expansion of g.f. A(x) satisfying A(x) = 1 + 4*x * AGM(A(x)^2, A(x)^4).

%C Here AGM(x,y) = AGM((x+y)/2, sqrt(x*y)) denotes the arithmetic-geometric mean.

%H Paul D. Hanna, <a href="/A369537/b369537.txt">Table of n, a(n) for n = 0..400</a>

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.

%F (1) A(x) = 1 + 4*x * AGM(A(x)^2, A(x)^4).

%F (2) A(x) = 1 + 4*x * AGM(A(x)^3, (A(x)^2 + A(x)^4)/2).

%F (3) A(x) = 1 + 4 * Series_Reversion( x / AGM((1 + 4*x)^2, (1 + 4*x)^4) ).

%F (4) A( x/AGM((1 + 4*x)^2, (1 + 4*x)^4) ) = 1 + 4*x.

%F a(n) ~ c * d^n / n^(3/2), where d = 28.0338265004083388867842940412535265992903265132288705384671366058202... and c = 0.21370406929731394715730174119301970236922500578435406822814969355660... - _Vaclav Kotesovec_, Jan 29 2024

%e G.f.: A(X) = 1 + 4*x + 48*x^2 + 784*x^3 + 14784*x^4 + 302960*x^5 + 6554624*x^6 + 147336384*x^7 + 3407207936*x^8 + 80538522544*x^9 + 1937217000576*x^10 + ...

%e RELATED SERIES.

%e x / AGM((1 + 4*x)^2, (1 + 4*x)^4) = x - 12*x^2 + 92*x^3 - 576*x^4 + 3220*x^5 - 16784*x^6 + 83536*x^7 - 402560*x^8 + 1894308*x^9 - 8751600*x^10 + ...

%e where A( x / AGM((1 + 4*x)^2, (1 + 4*x)^4) ) = 1 + 4*x.

%e A(x)^2 = 1 + 8*x + 112*x^2 + 1952*x^3 + 38144*x^4 + 799456*x^5 + 17566848*x^6 + 399375232*x^7 + 9315958784*x^8 + 221714573152*x^9 + ...

%e A(x)^3 = 1 + 12*x + 192*x^2 + 3568*x^3 + 72384*x^4 + 1554768*x^5 + 34760064*x^6 + 800484672*x^7 + 18858757632*x^8 + 452388579088*x^9 + ...

%e A(x)^4 = 1 + 16*x + 288*x^2 + 5696*x^3 + 120064*x^4 + 2646464*x^5 + 60279552*x^6 + 1407812352*x^7 + 33532936192*x^8 + 811514412736*x^9 + ...

%e (A(x)^2 + A(x)^4)/2 = 1 + 12*x + 200*x^2 + 3824*x^3 + 79104*x^4 + 1722960*x^5 + 38923200*x^6 + 903593792*x^7 + 21424447488*x^8 + 516614492944*x^9 + ...

%t (* Calculation of constants {d,c}: *) {1/r, s*(s - 1) * Sqrt[(1 + s + s^2 + s^3)/(2*Pi*(4 + s + 2*s^2 + 2*s^3 - 14*s^4 + 9*s^5))]} /. FindRoot[{1 + 2*Pi*r*s^4 / EllipticK[1 - 1/s^4] == s, 2*Pi*r*(1 - 2*s^4) + (-1 + s) * EllipticE[1 - 1/s^4] + (-1 + s^4)*Pi*r*s/(-1 + s) == 0}, {r, 1/30}, {s, 3/2}, WorkingPrecision -> 70] (* _Vaclav Kotesovec_, Jan 29 2024 *)

%o (PARI) /* From definition: A(x) = 1 + 4*x*AGM(A(x)^2, A(x)^4) */

%o {a(n) = my(A=1+4*x + x*O(x^n)); for(i=1, n, A = 1 + 4*x*agm(A^2, A^4)); polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) /* From formula: A(x) = 1 + 4*x*AGM(A(x)^3, (A(x)^2 + A(x)^4)/2) */

%o {a(n) = my(A=1+4*x + x*O(x^n)); for(i=1, n, A = 1 + 4*x*agm(A^3, (A^2 + A^4)/2)); polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) /* From A(x) = 1 + 4*Series_Reversion(x/AGM((1+4*x)^2, (1+4*x)^4)) */

%o {a(n) = my(A=1); A = 1 + 4*serreverse(x/agm((1+4*x)^2, (1+4*x)^4 +x*O(x^n))); polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A171454, A272823, A369536, A369538, A369539.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 28 2024