login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368721
a(n) = Product_{j=1..n, k=1..n} (j^4 + k^4 + n^4).
3
1, 3, 940896, 18425962131085183248, 652934720004728520613911984092239003385856, 433324200327440062759688153700055880769227264159137063987248492437306880000
OFFSET
0,2
COMMENTS
In general, for m>0, limit_{n->oo} (Product_{j=1..n, k=1..n} (j^m + k^m + n^m))^(1/(n^2)) / n^m = exp(Integral_{x=0..1, y=0..1} log(x^m + y^m + 1) dy dx) = 3 / exp(HurwitzLerchPhi(-1/2, 1, 1 + 1/m)/2 + Integral_{x=0..1} HurwitzLerchPhi(-1/(1 + x^m), 1, 1 + 1/m) / (1 + x^m) dx).
FORMULA
Limit_{n->oo} a(n)^(1/(n^2)) / n^4 = exp(Integral_{x=0..1, y=0..1} log(x^4 + y^4 + 1) dy dx) = 1.35451345305131009729671041498902524074679186355643287514556358...
MATHEMATICA
Table[Product[j^4 + k^4 + n^4, {j, 1, n}, {k, 1, n}], {n, 0, 6}]
CROSSREFS
Cf. A368685 (m=1), A368622 (m=2), A368720 (m=3).
Sequence in context: A261541 A309225 A137131 * A376130 A229725 A244113
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 04 2024
STATUS
approved