login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368719
a(n) = n! * Sum_{k=0..n} k^5 / k!.
2
0, 1, 34, 345, 2404, 15145, 98646, 707329, 5691400, 51281649, 512916490, 5642242441, 67707158124, 880193426905, 12322708514494, 184840628476785, 2957450056677136, 50276650964931169, 904979717370650610, 17194614630044837689, 343892292600899953780
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(0) = 0; a(n) = n*a(n-1) + n^5.
E.g.f.: B_5(x) * exp(x) / (1-x), where B_n(x) = Bell polynomials.
a(n) ~ 52*exp(1)*n!. - Vaclav Kotesovec, Jan 13 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, 5, stirling(5, k, 2)*x^k)*exp(x)/(1-x))))
CROSSREFS
Column k=5 of A337085.
Sequence in context: A251938 A059338 A301954 * A362953 A244881 A296833
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 04 2024
STATUS
approved