login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251938 Number of length 4+2 0..n arrays with the sum of the maximum minus the median of adjacent triples multiplied by some arrangement of +-1 equal to zero 1
34, 339, 1760, 6293, 17598, 41677, 87328, 166677, 295898, 495745, 791734, 1215373, 1804320, 2602645, 3662110, 5042499, 6811262, 9045701, 11832586, 15267973, 19459520, 24526335, 30597824, 37817343, 46341088, 56337177, 67989404, 81496455 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row 4 of A251935

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..94

FORMULA

Empirical: a(n) = a(n-1) +3*a(n-3) -a(n-4) -2*a(n-5) -3*a(n-6) -3*a(n-7) +5*a(n-8) +2*a(n-9) +5*a(n-10) -3*a(n-11) -3*a(n-12) -2*a(n-13) -a(n-14) +3*a(n-15) +a(n-17) -a(n-18)

Empirical for n mod 12 = 0: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (1631/144)*n^2 - (73/20)*n + 1

Empirical for n mod 12 = 1: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15575/1296)*n^2 - (146743/25920)*n + (3073/576)

Empirical for n mod 12 = 2: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15127/1296)*n^2 - (7913/1620)*n + (169/54)

Empirical for n mod 12 = 3: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (1631/144)*n^2 - (1423/320)*n + (209/64)

Empirical for n mod 12 = 4: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15575/1296)*n^2 - (7273/1620)*n + (31/9)

Empirical for n mod 12 = 5: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15127/1296)*n^2 - (156983/25920)*n + (4355/1728)

Empirical for n mod 12 = 6: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (1631/144)*n^2 - (73/20)*n + (7/2)

Empirical for n mod 12 = 7: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15575/1296)*n^2 - (137023/25920)*n + (3289/576)

Empirical for n mod 12 = 8: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15127/1296)*n^2 - (7913/1620)*n + (17/27)

Empirical for n mod 12 = 9: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (1631/144)*n^2 - (1543/320)*n + (185/64)

Empirical for n mod 12 = 10: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15575/1296)*n^2 - (7273/1620)*n + (107/18)

Empirical for n mod 12 = 11: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15127/1296)*n^2 - (147263/25920)*n + (5003/1728)

EXAMPLE

Some solutions for n=6

..2....2....3....5....6....1....1....4....3....5....4....3....1....4....6....6

..4....4....5....1....2....5....2....5....0....2....2....2....5....0....5....6

..5....6....6....0....0....3....2....2....5....1....5....0....6....4....5....2

..3....1....3....5....0....0....2....6....2....4....6....6....1....3....4....3

..4....3....2....4....4....6....6....6....1....0....5....4....5....4....5....6

..0....6....0....3....6....3....2....4....6....0....3....5....4....5....3....6

CROSSREFS

Sequence in context: A233061 A281805 A034978 * A059338 A301954 A244881

Adjacent sequences:  A251935 A251936 A251937 * A251939 A251940 A251941

KEYWORD

nonn

AUTHOR

R. H. Hardin, Dec 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 21:56 EDT 2021. Contains 345402 sequences. (Running on oeis4.)