The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A251938 Number of length 4+2 0..n arrays with the sum of the maximum minus the median of adjacent triples multiplied by some arrangement of +-1 equal to zero 1

%I

%S 34,339,1760,6293,17598,41677,87328,166677,295898,495745,791734,

%T 1215373,1804320,2602645,3662110,5042499,6811262,9045701,11832586,

%U 15267973,19459520,24526335,30597824,37817343,46341088,56337177,67989404,81496455

%N Number of length 4+2 0..n arrays with the sum of the maximum minus the median of adjacent triples multiplied by some arrangement of +-1 equal to zero

%C Row 4 of A251935

%H R. H. Hardin, <a href="/A251938/b251938.txt">Table of n, a(n) for n = 1..94</a>

%F Empirical: a(n) = a(n-1) +3*a(n-3) -a(n-4) -2*a(n-5) -3*a(n-6) -3*a(n-7) +5*a(n-8) +2*a(n-9) +5*a(n-10) -3*a(n-11) -3*a(n-12) -2*a(n-13) -a(n-14) +3*a(n-15) +a(n-17) -a(n-18)

%F Empirical for n mod 12 = 0: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (1631/144)*n^2 - (73/20)*n + 1

%F Empirical for n mod 12 = 1: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15575/1296)*n^2 - (146743/25920)*n + (3073/576)

%F Empirical for n mod 12 = 2: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15127/1296)*n^2 - (7913/1620)*n + (169/54)

%F Empirical for n mod 12 = 3: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (1631/144)*n^2 - (1423/320)*n + (209/64)

%F Empirical for n mod 12 = 4: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15575/1296)*n^2 - (7273/1620)*n + (31/9)

%F Empirical for n mod 12 = 5: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15127/1296)*n^2 - (156983/25920)*n + (4355/1728)

%F Empirical for n mod 12 = 6: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (1631/144)*n^2 - (73/20)*n + (7/2)

%F Empirical for n mod 12 = 7: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15575/1296)*n^2 - (137023/25920)*n + (3289/576)

%F Empirical for n mod 12 = 8: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15127/1296)*n^2 - (7913/1620)*n + (17/27)

%F Empirical for n mod 12 = 9: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (1631/144)*n^2 - (1543/320)*n + (185/64)

%F Empirical for n mod 12 = 10: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15575/1296)*n^2 - (7273/1620)*n + (107/18)

%F Empirical for n mod 12 = 11: a(n) = (121223/25920)*n^5 + (5339/5184)*n^4 + (1793/108)*n^3 + (15127/1296)*n^2 - (147263/25920)*n + (5003/1728)

%e Some solutions for n=6

%e ..2....2....3....5....6....1....1....4....3....5....4....3....1....4....6....6

%e ..4....4....5....1....2....5....2....5....0....2....2....2....5....0....5....6

%e ..5....6....6....0....0....3....2....2....5....1....5....0....6....4....5....2

%e ..3....1....3....5....0....0....2....6....2....4....6....6....1....3....4....3

%e ..4....3....2....4....4....6....6....6....1....0....5....4....5....4....5....6

%e ..0....6....0....3....6....3....2....4....6....0....3....5....4....5....3....6

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 11 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 28 02:14 EDT 2023. Contains 361576 sequences. (Running on oeis4.)