login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368723
a(n) = Product_{i=1..n, j=1..n, k=1..n} (i^4 + j^4 + k^4).
4
1, 3, 30180180096, 130911253854794147456410254996552949923277899497472
OFFSET
0,2
COMMENTS
Next term is too long to be included.
In general, for m>0, limit_{n->oo} (Product_{i=1..n, j=1..n, k=1..n} (i^m + j^m + k^m))^(1/(n^3)) / n^m = exp(Integral_{x=0..1, y=0..1, z=0..1} log(x^m + y^m + z^m) dz dy dx) = exp(Integral_{x=0..1, y=0..1} (log(1 + x^k + y^k) - k + k*hypergeom2F1(1/k, 1, (k+1)/k, -1/(x^k + y^k))) dy dx).
FORMULA
Limit_{n->oo} a(n)^(1/(n^3)) / n^4 = exp(Integral_{x=0..1, y=0..1, z=0..1} log(x^4 + y^4 + z^4) dz dy dx) = 0.3570458697635761757481417...
MATHEMATICA
Table[Product[i^4 + j^4 + k^4, {i, 1, n}, {j, 1, n}, {k, 1, n}], {n, 0, 5}]
CROSSREFS
Cf. A306594 (m=1), A324425 (m=2), A368722 (m=3).
Sequence in context: A036236 A235357 A260002 * A058447 A275939 A230810
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 04 2024
STATUS
approved