login
A368425
The corresponding greatest common divisors to A368424(n).
2
5, 23, 19, 5, 47, 29, 71, 431, 97, 53, 167, 191, 505, 239, 263, 139, 149, 311, 163, 499, 173, 359, 383, 197, 409, 211, 643, 479, 503, 23, 269, 293, 599, 1201, 317, 647, 19, 719, 743, 379, 389, 839, 863, 887, 461, 11113, 983, 5, 509, 1031, 4297, 557, 1129
OFFSET
1,1
LINKS
EXAMPLE
a(2) = 23 since gcd(A019320(A368424(2)), A019321(A368424(2))) = gcd(2047, 88573) = 23.
MAPLE
subs(1=NULL, [seq(igcd(numtheory:-cyclotomic(n, 2), numtheory:-cyclotomic(n, 3)), n=1..1000)]); # Robert Israel, Dec 26 2023
MATHEMATICA
Select[GCD[Cyclotomic[Range[600], 2], Cyclotomic[Range[600], 3]], #>1&] (* Stefano Spezia, Dec 26 2023 *)
PROG
(PARI) for(n=1, 1000, m=gcd(polcyclo(n, 2), polcyclo(n, 3)); if(m>1, print1(m, ", ")))
CROSSREFS
Cf. A019320, A019321, A191609 (primes dividing some term of this sequence), A368424.
Sequence in context: A177242 A233756 A002582 * A102723 A136146 A289278
KEYWORD
nonn,look
AUTHOR
Tomohiro Yamada, Dec 24 2023
STATUS
approved