login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191609
Primes modulo which the multiplicative orders of 2 and 3 are equal.
3
5, 19, 23, 29, 47, 53, 71, 97, 101, 139, 149, 163, 167, 173, 191, 197, 211, 239, 263, 269, 293, 311, 317, 359, 379, 383, 389, 409, 431, 461, 479, 499, 503, 509, 557, 599, 643, 647, 653, 677, 701, 719, 743, 773, 797, 821, 839, 859, 863, 887, 907, 941, 983
OFFSET
1,1
LINKS
MAPLE
select(p -> isprime(p) and numtheory:-order(2, p) = numtheory:-order(3, p), [seq(i, i=5..10000, 2)]); # Robert Israel, Jan 24 2024
MATHEMATICA
okQ[p_] := MultiplicativeOrder[2, p] == MultiplicativeOrder[3, p];
Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
PROG
(PARI) forprime(p=5, 10^3, if( znorder(Mod(2, p))==znorder(Mod(3, p)), print1(p, ", "); ) )
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Jun 08 2011
STATUS
approved