login
A191084
Primes p that have Kronecker symbol (p|87) = -1.
2
5, 19, 23, 31, 37, 43, 53, 59, 61, 71, 73, 79, 83, 97, 107, 127, 149, 157, 163, 167, 173, 179, 193, 197, 211, 227, 229, 233, 239, 257, 271, 281, 307, 331, 337, 347, 353, 367, 379, 383, 401, 409, 419, 421, 431, 433, 509, 521, 541, 557, 577, 587, 593, 601, 607
OFFSET
1,1
COMMENTS
From Jianing Song, Oct 13 2022: (Start)
Originally erroneously named "Primes that are not squares mod 87".
Equivalently, primes p such that kronecker(-87,p) = -1.
Rational primes that remain inert in the field Q(sqrt(-87)).
Primes congruent to 5, 10, 19, 20, 23, 31, 35, 37, 38, 40, 43, 46, 53, 55, 59, 61, 62, 65, 70, 71, 73, 74, 76, 79, 80, 83, 85, 86 modulo 87. (End)
MATHEMATICA
Select[Prime[Range[200]], JacobiSymbol[#, 87]==-1&]
PROG
(Magma) [p: p in PrimesUpTo(607) | JacobiSymbol(p, 87) eq -1]; // Vincenzo Librandi, Sep 11 2012
(PARI) isA191084(p) == isprime(p) && kronecker(p, 87) == -1 \\ Jianing Song, Oct 13 2022
CROSSREFS
Cf. A191052 (rational primes that decompose in the field Q(sqrt(15)))..
Sequence in context: A191054 A097934 A191609 * A146509 A062340 A167766
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 25 2011
EXTENSIONS
Definition corrected by Jianing Song, Oct 13 2022
STATUS
approved