login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A191052
Primes p that have Kronecker symbol (p|87) = 1.
2
2, 7, 11, 13, 17, 41, 47, 67, 89, 101, 103, 109, 113, 131, 137, 139, 151, 181, 191, 199, 223, 241, 251, 263, 269, 277, 283, 293, 311, 313, 317, 349, 359, 373, 389, 397, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563, 569, 571, 599
OFFSET
1,1
COMMENTS
From Jianing Song, Oct 13 2022: (Start)
Originally erroneously named "Primes that are squares mod 87".
Equivalently, primes p such that kronecker(-87,p) = 1.
Rational primes that decompose in the field Q(sqrt(-87)).
Primes congruent to 1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 22, 25, 26, 28, 32, 34, 41, 44, 47, 49, 50, 52, 56, 64, 67, 68, 77, 82 modulo 87. (End)
MATHEMATICA
Select[Prime[Range[200]], JacobiSymbol[#, 87]==1&]
PROG
(Magma) [p: p in PrimesUpTo(599) | JacobiSymbol(p, 87) eq 1]; // Vincenzo Librandi, Sep 10 2012
(PARI) isA191052(p) == isprime(p) && kronecker(p, 87) == 1 \\ Jianing Song, Oct 13 2022
CROSSREFS
Cf. A191084 (rational primes that remain inert in the field Q(sqrt(-87))).
Sequence in context: A020597 A140563 A154679 * A338173 A138889 A097143
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 25 2011
EXTENSIONS
Definition corrected by Jianing Song, Oct 13 2022
STATUS
approved