login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102723
Smallest prime a(n) such that a(n)-x and a(n)+x, for x=1 to n, are all composite.
4
5, 23, 23, 53, 53, 211, 211, 211, 211, 211, 211, 1847, 1847, 2179, 2179, 2179, 2179, 3967, 3967, 16033, 16033, 16033, 16033, 24281, 24281, 24281, 24281, 24281, 24281, 38501, 38501, 38501, 38501, 38501, 38501, 38501, 38501, 38501, 38501, 58831
OFFSET
1,1
COMMENTS
a(2n+1)=a(2n). - Robert G. Wilson v, Feb 22 2005
Using Dirichlet's theorem, Sierpiński (1948) proved that a(n) exists for all n > 0. He noted that a(n) is a non-twin prime (A007510), except for a(1) = 5. - Jonathan Sondow, Oct 27 2017
LINKS
David A. Corneth, Table of n, a(n) for n = 1..479 (first 97 terms from Harvey P. Dale)
W. Sierpiński, Remarque sur la répartition des nombres premiers, Colloq. Math., 1 (1948), 193-194.
MATHEMATICA
f[n_] := Block[{k = 1}, While[ Union[ PrimeQ /@ Sort[ Flatten[ Table[{Prime[k] - i, Prime[k] + i}, {i, n}]]]] != {False}, k++ ]; Prime[k]]; Table[ f[n], {n, 40}] (* Robert G. Wilson v, Feb 22 2005 *)
cmpgap[n_]:=Module[{p=Prime[n]}, Min[p-NextPrime[p, -1], NextPrime[p]-p]]; Module[{nn=10000, prs}, prs=Table[{Prime[n], cmpgap[n]}, {n, nn}]; Table[ SelectFirst[ prs, #[[2]]>=k&], {k, 2, 50}]][[All, 1]] (* Harvey P. Dale, Oct 15 2021 *)
CROSSREFS
Sequence in context: A233756 A002582 A368425 * A136146 A289278 A167804
KEYWORD
nonn
AUTHOR
Ray G. Opao, Feb 06 2005
EXTENSIONS
a(12)-a(40) from Robert G. Wilson v, Feb 22 2005
STATUS
approved