Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Oct 16 2021 05:11:52
%S 5,23,23,53,53,211,211,211,211,211,211,1847,1847,2179,2179,2179,2179,
%T 3967,3967,16033,16033,16033,16033,24281,24281,24281,24281,24281,
%U 24281,38501,38501,38501,38501,38501,38501,38501,38501,38501,38501,58831
%N Smallest prime a(n) such that a(n)-x and a(n)+x, for x=1 to n, are all composite.
%C a(2n+1)=a(2n). - _Robert G. Wilson v_, Feb 22 2005
%C Using Dirichlet's theorem, Sierpiński (1948) proved that a(n) exists for all n > 0. He noted that a(n) is a non-twin prime (A007510), except for a(1) = 5. - _Jonathan Sondow_, Oct 27 2017
%H David A. Corneth, <a href="/A102723/b102723.txt">Table of n, a(n) for n = 1..479</a> (first 97 terms from Harvey P. Dale)
%H W. Sierpiński, <a href="http://matwbn.icm.edu.pl/ksiazki/cm/cm1/cm131.pdf"> Remarque sur la répartition des nombres premiers</a>, Colloq. Math., 1 (1948), 193-194.
%t f[n_] := Block[{k = 1}, While[ Union[ PrimeQ /@ Sort[ Flatten[ Table[{Prime[k] - i, Prime[k] + i}, {i, n}]]]] != {False}, k++ ]; Prime[k]]; Table[ f[n], {n, 40}] (* _Robert G. Wilson v_, Feb 22 2005 *)
%t cmpgap[n_]:=Module[{p=Prime[n]},Min[p-NextPrime[p,-1],NextPrime[p]-p]]; Module[{nn=10000,prs},prs=Table[{Prime[n],cmpgap[n]},{n,nn}];Table[ SelectFirst[ prs,#[[2]]>=k&],{k,2,50}]][[All,1]] (* _Harvey P. Dale_, Oct 15 2021 *)
%Y Cf. A007510, A023186.
%K nonn
%O 1,1
%A _Ray G. Opao_, Feb 06 2005
%E a(12)-a(40) from _Robert G. Wilson v_, Feb 22 2005