login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368222
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k grid up to horizontal reflection by an asymmetric tile.
5
1, 2, 3, 4, 10, 4, 8, 36, 32, 10, 16, 136, 256, 136, 16, 32, 528, 2048, 2080, 512, 36, 64, 2080, 16384, 32896, 16384, 2080, 64, 128, 8256, 131072, 524800, 524288, 131328, 8192, 136, 256, 32896, 1048576, 8390656, 16777216, 8390656, 1048576, 32896, 256
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+---------------------------------------------
1 | 1 2 4 8 16 32
2 | 3 10 36 136 528 2080
3 | 4 32 256 2048 16384 131072
4 | 10 136 2080 32896 524800 8390656
5 | 16 512 16384 524288 16777216 536870912
6 | 36 2080 131328 8390656 536887296 34359869440
MATHEMATICA
A368222[n_, m_] := 2^(n*m/2 - 1) (2^(n*m/2) + Boole[EvenQ[n]])
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 18 2023
STATUS
approved