login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368207
Bacher numbers: number of nonnegative representations of n = w*x+y*z with max(w,x) < min(y,z).
13
1, 2, 2, 5, 3, 8, 4, 8, 9, 9, 6, 18, 7, 12, 14, 19, 9, 20, 10, 27, 16, 18, 12, 34, 20, 21, 20, 30, 15, 44, 16, 32, 24, 27, 30, 51, 19, 30, 28, 49, 21, 58, 22, 42, 41, 36, 24, 70, 35, 47, 36, 49, 27, 66, 36, 72, 40, 45, 30, 88, 31, 48, 62, 71, 42, 74, 34, 63, 48
OFFSET
1,2
COMMENTS
When n = p is an odd prime, Bacher proved that a(p) = (p+1)/2.
It appears that also a(k*p) = sigma(k)*(p+1)/2, for all prime p > 2k, where sigma(k) is the sum of the divisors of k (A000203).
It appears furthermore that a(p^2) = (p^2 + 3*p)/2; a(p^3) = (p^3 + p^2 + p + 1)/2; a(p^4) = (p^4 + p^3 + 3p^2 + p)/2, for all prime p.
Conjectures: (1) a(n) >= sigma(n)/2, with equality if and only if n has no middle divisors, i.e., if and only if n is in A071561. (2) a(n)/sigma(n) converges to 1/2. - Pontus von Brömssen, Dec 18 2023
From Chai Wah Wu, Dec 19 2023: (Start)
Considering representations where min(w,x)=0 shows that a(n) >= 2*A066839(n) - A038548(n).
It appears that a(p^5) = (p^5 + p^4 + p^3 + p^2 + p + 1)/2 for all prime p > 2 and a(p^6) = (p^6 + p^5 + p^4 + 3p^3 + p^2 + p)/2 for all prime p.
Conjecture: a(p^m) = sigma(p^m)/2 for odd m and all prime p > 2. a(p^m) = (sigma(p^m)-1)/2 + p^(m/2) for even m and all prime p. a(2^m) = sigma(2^m)/2 + 1/2 for m odd. (End)
LINKS
Roland Bacher, A quixotic proof of Fermat's two squares theorem for prime numbers, American Mathematical Monthly, Vol. 130, No. 9 (November 2023), 824-836; arXiv version, arXiv:2210.07657 [math.NT], 2022.
Don Knuth, CWEB program.
FORMULA
Let t(n) = {d|n and d*d <= n}, and s(d, n) = 2*d - 1 if d*d = n, otherwise 4*d - 2. Then a(n) = (Sum_{d in t(n)} s(d, n)) + (Sum_{k=1..floor(n/2)} Sum_{w in t(k)} Sum_{y in t(n-k) and k < y*w} max(1, 2*([w*w < k] + [y*y < n - k]))), where [] denote the Iverson brackets. (See the 'Julia' implementation below.) - Peter Luschny, Dec 21 2023
EXAMPLE
For n = 13, the a(13) = 7 solutions are (w,x,y,z) = (0,0,1,13), (0,0,13,1), (1,1,2,6), (1,1,3,4), (1,1,4,3), (1,1,6,2), (2,2,3,3).
MATHEMATICA
t[n_] := t[n] = Select[Divisors[n], #^2 <= n&];
A368207[n_] := Sum[(1 + Boole[d^2 < n])(2d - 1), {d, t[n]}] + Sum[If[wx < y*w, Max[1, 2(Boole[w^2 < wx] + Boole[y^2 < n-wx])], 0], {wx, Floor[n/2]}, {w, t[wx]}, {y, t[n - wx]}];
Array[A368207, 100] (* Paolo Xausa, Jan 02 2024 *)
PROG
(CWEB) @ See Knuth link.
(Python) # See Branicky link for translation of Knuth's CWEB program.
(Python)
from math import isqrt
def A368207(n):
c, r = 0, isqrt(n)
for w in range(r+1):
for x in range(w, r+1):
wx = w*x
if wx>n:
break
for y in range(x+1, r+1):
for z in range(y, n+1):
yz = wx+y*z
if yz>n:
break
if yz==n:
m = 1
if w!=x:
m<<=1
if y!=z:
m<<=1
c+=m
return c # Chai Wah Wu, Dec 19 2023
(Python)
from sympy import divisors
# faster program
def A368207(n):
c = 0
for d2 in divisors(n):
if d2**2 > n:
break
c += (d2<<2)-2 if d2**2<n else (d2<<1)-1
for wx in range(1, (n>>1)+1):
for d1 in divisors(wx):
if d1**2 > wx:
break
for d2 in divisors(m:=n-wx):
if d2**2 > m:
break
if wx < d1*d2:
k = 1
if d1**2 != wx:
k <<=1
if d2**2 != m:
k <<=1
c+=k
return c # Chai Wah Wu, Dec 19 2023
(Julia)
function A368207(n)
t(n) = (d for d in divisors(n) if d * d <= n)
s(d) = d * d == n ? d * 2 - 1 : d * 4 - 2
c(y, w, wx) = max(1, 2*(Int(w*w < wx) + Int(y*y < n - wx)))
sum(sum(sum(c(y, w, wx) for y in t(n - wx) if wx < y * w; init=0)
for w in t(wx)) for wx in 1:div(n, 2); init=sum(s(d) for d in t(n)))
end
println([A368207(n) for n in 1:69]) # Peter Luschny, Dec 21 2023
CROSSREFS
Cf. A000203, A071561, A368276 (monotone), A368341 (fixed points), A368457, A368458 (semiprimes), A368580 (degenerated).
Sequence in context: A308160 A151729 A088652 * A266981 A045893 A071939
KEYWORD
nonn,changed
AUTHOR
Don Knuth, Dec 16 2023
STATUS
approved