OFFSET
0,2
COMMENTS
Whittaker's Root Series Formula is applied to the polynomial equation -1+2x+3x^2+x^3. The following infinite series involving the Plastic Ratio (rho) is obtained: rho - 1 = 1/2 - 3/(2*7) + 7/(7*21) - 14/(21*65) + 25/(65*200) - 40/(200*616) + 56/(616*1897) - ...
The terms of the sequence appear in the numerators of the infinite sequence (with alternating signs). The denominators of the sequence are formed by multiplying consecutive terms from the sequence A218836.
LINKS
E. T. Whittaker and G. Robinson, The Calculus of Observations, London: Blackie & Son, Ltd. 1924, pp. 120-123.
FORMULA
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3).
a(n) = determinant of the n X n Toeplitz Matrix((3,2,-1,0,0,...,0),(3,1,0,0,0,...,0)).
EXAMPLE
a(0) = 1,
a(1) = 3*a(0) = 3*1 = 3,
a(2) = 3*a(1) - 2*a(0) = 3*3 - 2*1 = 7,
a(3) = 3*a(2) - 2*a(1) - a(0) = 3*7 - 2*3 - 1 = 14.
MAPLE
a:=proc(n) local c1, c2, c3;
option remember;
c1:=3; c2:=2; c3:=1;
if n=0 then 1
elif n=1 then 3
elif n=2 then 7
else c1*a(n-1)-c2*a(n-2)-c3*a(n-3); fi;
end; # N. J. A. Sloane, Dec 31 2023
[seq(a(n), n=0..30)];
CROSSREFS
KEYWORD
sign
AUTHOR
Raul Prisacariu, Dec 18 2023
STATUS
approved