login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368157
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 + 2*x^2.
0
1, 1, 2, 2, 4, 6, 3, 10, 16, 16, 5, 20, 46, 56, 44, 8, 40, 108, 184, 188, 120, 13, 76, 244, 496, 692, 608, 328, 21, 142, 520, 1248, 2088, 2480, 1920, 896, 34, 260, 1074, 2936, 5764, 8256, 8592, 5952, 2448, 55, 470, 2156, 6616, 14764, 24760, 31200, 28992
OFFSET
1,3
COMMENTS
Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.
LINKS
Rigoberto Flórez, Robinson A. Higuita, and Antara Mikherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers 18 (2018) 1-28.
FORMULA
p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 2*x, u = p(2,x), and v = 1 + 2*x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 + 4*x + 13*x^2), b = (1/2)*(2*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k).
EXAMPLE
First eight rows:
1
1 2
2 4 6
3 10 16 16
5 20 46 56 44
8 40 108 184 188 120
13 76 244 496 692 608 328
21 142 520 1248 2088 2480 1920 896
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 16*x^2 + 16*x^3, so (T(4,k)) = (3,10,16,16), k=0..3.
MATHEMATICA
p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 + 2x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
CROSSREFS
Cf. A000045 (column 1); A002605, (p(n,n-1)); A030195 (row sums), (p(n,1)); A182228 (alternating row sums), (p(n,-1)); A015545, (p(n,2)); A099012, (p(n,-2)); A087567, (p(n,3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151, A368152, A368153, A368154, A368155, A368156.
Sequence in context: A127718 A115068 A051495 * A286542 A278973 A073256
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 20 2024
STATUS
approved