The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A368077 Numbers k such that row k of Pascal's triangle mod 10 contains all the numbers 0 to 9. 1
 47, 59, 89, 94, 117, 118, 119, 123, 147, 173, 189, 198, 214, 219, 221, 222, 223, 233, 237, 238, 239, 243, 244, 247, 248, 297, 298, 309, 313, 317, 318, 319, 323, 339, 344, 345, 346, 347, 348, 363, 366, 367, 368, 369, 373, 397, 398, 409, 413, 414, 417, 418, 421, 422, 423, 429, 433, 437, 438, 439 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers k such that A208280(k) = 10. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE a(3) = 89 is a term because binomial(89,15) = 38163061637050680 == 0 (mod 10), binomial(89,0) = 1 == 1 (mod 10), binomial(89,5) = 41507642 == 2 (mod 10), binomial(89,8) = 70625252863 == 3 (mod 10), binomial(89,3) = 113564 == 4 (mod 10), binomial(89,16) = 176504160071359395 == 5 (mod 10), binomial(89,2) = 3916 == 6 (mod 10), binomial(89,9) = 635627275767 == 7 (mod 10), binomial(89,6) = 581106988 == 8 (mod 10), and binomial(89,1) = 89 == 9 (mod 10). MAPLE filter:= proc(n) local k, S; S:= {\$0..9}: for k from 0 to n/2 do S:= S minus {(binomial(n, k) mod 10)}; if S = {} then return true fi od; false end proc: select(filter, [\$1..1000]); # Robert Israel, Dec 10 2023 CROSSREFS Cf. A208280. Sequence in context: A227982 A102274 A139909 * A243430 A342093 A126980 Adjacent sequences: A368074 A368075 A368076 * A368078 A368079 A368080 KEYWORD nonn,base AUTHOR Robert Israel, Dec 10 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 10:58 EDT 2024. Contains 375068 sequences. (Running on oeis4.)