

A102274


Primes p such that Q(sqrt(21p)) has genus characters chi_{3} = 1, chi_{7} = 1.


4



47, 59, 83, 131, 167, 227, 251, 311, 383, 419, 467, 479, 503, 563, 587, 647, 719, 839, 887, 971, 983, 1091, 1151, 1223, 1259, 1307, 1319, 1427, 1487, 1511, 1559, 1571, 1811, 1823, 1847, 1907, 1931, 1979, 2063, 2099, 2243, 2267, 2351, 2399, 2411, 2579, 2663, 2687, 2819, 2903, 2939, 2999
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes p such that p is 3 (mod 4) and (3/p) = (7/p) = 1, where (k/n) is the Kronecker symbol.  Robin Visser, Mar 13 2024


LINKS



FORMULA

The primes are congruent to {47, 59, 83} (mod 84).  Robin Visser, Mar 13 2024


PROG

(Magma) [p : p in PrimesUpTo(3000)  p mod 84 in [47, 59, 83]]; // Robin Visser, Mar 13 2024


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



