%I #8 Dec 30 2023 23:13:28
%S 47,59,89,94,117,118,119,123,147,173,189,198,214,219,221,222,223,233,
%T 237,238,239,243,244,247,248,297,298,309,313,317,318,319,323,339,344,
%U 345,346,347,348,363,366,367,368,369,373,397,398,409,413,414,417,418,421,422,423,429,433,437,438,439
%N Numbers k such that row k of Pascal's triangle mod 10 contains all the numbers 0 to 9.
%C Numbers k such that A208280(k) = 10.
%H Robert Israel, <a href="/A368077/b368077.txt">Table of n, a(n) for n = 1..10000</a>
%e a(3) = 89 is a term because
%e binomial(89,15) = 38163061637050680 == 0 (mod 10),
%e binomial(89,0) = 1 == 1 (mod 10),
%e binomial(89,5) = 41507642 == 2 (mod 10),
%e binomial(89,8) = 70625252863 == 3 (mod 10),
%e binomial(89,3) = 113564 == 4 (mod 10),
%e binomial(89,16) = 176504160071359395 == 5 (mod 10),
%e binomial(89,2) = 3916 == 6 (mod 10),
%e binomial(89,9) = 635627275767 == 7 (mod 10),
%e binomial(89,6) = 581106988 == 8 (mod 10), and
%e binomial(89,1) = 89 == 9 (mod 10).
%p filter:= proc(n) local k,S;
%p S:= {$0..9}:
%p for k from 0 to n/2 do
%p S:= S minus {(binomial(n,k) mod 10)};
%p if S = {} then return true fi
%p od;
%p false
%p end proc:
%p select(filter, [$1..1000]); # _Robert Israel_, Dec 10 2023
%Y Cf. A208280.
%K nonn,base
%O 1,1
%A _Robert Israel_, Dec 10 2023