The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A367890 Expansion of e.g.f. exp(3*(exp(x) - 1 - x)). 2
1, 0, 3, 3, 30, 93, 633, 3342, 22809, 156063, 1183872, 9453711, 80455125, 721576560, 6809391111, 67332650007, 695777512638, 7493572404345, 83926492573341, 975467527353750, 11744536832206149, 146234590864310019, 1880198749437144456, 24928860500681953683 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 - 3 * x * ( A(x) - A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-3) * Sum_{k>=0} 3^k * (k-3)^n / k!.
a(0) = 1; a(n) = 3 * Sum_{k=1..n-1} binomial(n-1,k) * a(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * A027710(k).
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[3 (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = 3 Sum[Binomial[n - 1, k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
Table[Sum[Binomial[n, k] (-3)^(n - k) BellB[k, 3], {k, 0, n}], {n, 0, 23}]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(3*(exp(x) - 1 - x)))) \\ Michel Marcus, Dec 04 2023
CROSSREFS
Sequence in context: A351990 A151480 A096351 * A344934 A086667 A067098
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 04 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 08:56 EDT 2024. Contains 372733 sequences. (Running on oeis4.)