The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A351990 Number of minimum edge covers of the complete graph K_n. 0
 0, 1, 3, 3, 30, 15, 315, 105, 3780, 945, 51975, 10395, 810810, 135135, 14189175, 2027025, 275675400, 34459425, 5892561675, 654729075, 137493105750, 13749310575, 3478575575475, 316234143225, 94870242967500, 7905853580625, 2774954606799375, 213458046676875, 86663966950811250, 6190283353629375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Table of n, a(n) for n=1..30. Eric Weisstein's World of Mathematics, Complete Graph Eric Weisstein's World of Mathematics, Minimum Edge Cover FORMULA a(n) = (n - 1)!! for n == 0 (mod 2). a(n) = 2^((1 - n)/2)*n!/Gamma((n - 1)/2) for n == 1 (mod 2). a(1) = 0, a(2) = 1, a(n) = (n - 1)*(((n - 2)*(n - 1)*n - 4)*a(n - 2) - 6*a(n - 1))/(n*(11 + (n - 6)*n) - 10). MATHEMATICA Table[Piecewise[{{(2^((1 - n)/2) Gamma[n + 1])/Gamma[(n - 1)/2], Mod[n, 2] == 1}, {(n - 1)!!, Mod[n, 2] == 0}}, 0], {n, 20}] RecurrenceTable[{a[1] == 0, a[2] == 1, a[n] == ((n - 1) (((n - 2) (n - 1) n - 4) a[n - 2] - 6 a[n - 1]))/(n (11 + (n - 6) n) - 10)}, a, {n, 20}] CROSSREFS Sequence in context: A139206 A100651 A124244 * A151480 A096351 A367890 Adjacent sequences: A351987 A351988 A351989 * A351991 A351992 A351993 KEYWORD nonn AUTHOR Eric W. Weisstein, Feb 27 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 21:14 EDT 2024. Contains 372765 sequences. (Running on oeis4.)