login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351989
Fibonacci(p-J(p,5)) mod p^3, where p is the n-th prime and J is the Jacobi symbol.
1
2, 3, 5, 21, 55, 377, 2584, 2584, 9867, 754, 27683, 34706, 55391, 77486, 2961, 49237, 178121, 151768, 269809, 180340, 137459, 440741, 304859, 634125, 3589, 224018, 925249, 689508, 276097, 389850, 1566164, 488892, 101791, 731140, 1838362, 3406409, 31557, 2311014, 3158805, 4571698, 2914836, 3267050, 1294789, 6599056, 7246251, 159399
OFFSET
1,1
COMMENTS
Very similar to A113650 but modulo p^3.
MATHEMATICA
a[n_]:= Mod[Fibonacci[(n-JacobiSymbol[n, 5])], Power[n, 3]]; Table[a[Prime[n]], {n, 50}]
PROG
(Sage)
p = 1
while p < 200:
print(fibonacci(p-jacobi_symbol(p, 5))%pow(p, 3), end=', ')
p = next_prime(p)
(PARI) a(n) = my(p=prime(n)); lift(Mod([1, 1; 1, 0]^(p-kronecker(p, 5)), p^3)[1, 2]); \\ Michel Marcus, Feb 28 2022
(Python)
from sympy import prime, fibonacci
from sympy.ntheory import jacobi_symbol
def A351989(n): return fibonacci((p := prime(n))-jacobi_symbol(p, 5)) % p**3 # Chai Wah Wu, Feb 28 2022
CROSSREFS
Cf. A113650.
Sequence in context: A113650 A259376 A060321 * A093522 A352124 A093499
KEYWORD
nonn,easy
AUTHOR
Javier Rivera Romeu, Feb 27 2022
STATUS
approved